# Campos Eletromagnéticos Gerados por Descargas Atmosféricas

Fabio Romero e Alexandre Piantini

Resumo - Os campos eletromagnéticos irradiados durante a etapa da descarga atmosférica conhecida como descarga de retorno (return stroke) são responsáveis pela indução de sobretensões em linhas de transmissão, distribuição e cabos de telecomunicações, as quais podem ocasionar problemas nas redes elétricas, particularmente nas de distribuição de energia e de telecomunicações, prejudicando desde pequenos consumidores até grandes indústrias. Este trabalho analisa o comportamento do campo elétrico vertical  $(E_z)$  e da indução magnética  $(B_{\phi})$  gerados por descargas atmosféricas nuvem-solo frente à variação de parâmetros tais como a velocidade de propagação da corrente, a distância entre o ponto de incidência da descarga atmosférica e o ponto de cálculo dos campos e a altura do ponto de observação em relação ao solo. Para a determinação da distribuição espaçotemporal da corrente ao longo do canal da descarga adotou-se o modelo da Linha de Transmissão (TL), tendo o solo sido admitido como um plano perfeitamente condutor.

*Palavras-Chave* – campos eletromagnéticos, descargas atmosféricas, transitórios eletromagnéticos.

#### I. INTRODUÇÃO

S descargas atmosféricas são freqüentemente consideradas responsáveis por uma parcela expressiva das falhas e interrupções não programadas de fornecimento de energia em sistemas elétricos, podendo provocar danos permanentes a equipamentos eletrônicos sensíveis e de alto valor agregado [1-3].

A explicação destes fatos relaciona-se à utilização, em larga escala, de equipamentos de elevada susceptibilidade, nos quais a ação direta dos campos eletromagnéticos e as interferências resultantes dos acoplamentos destes campos com os meios condutores podem provocar desde operações indevidas até a destruição dos equipamentos e danos a sistemas elétricos e eletrônicos [4].

Uma descarga nuvem-solo típica gera um campo eletromagnético, o qual pode induzir tensões de amplitudes consideráveis em linhas de energia situadas nas proximidades do ponto de incidência da descarga. O conhecimento das características de tais campos é fundamental para o cômputo dessas tensões induzidas. Neste trabalho, após a apresentação da metodologia de cálculo, são feitas comparações com os resultados dos cálculos obtidos por Nucci *et. al.* [5], as quais confirmam a validade do procedimento adotado. Posteriormente são discutidos os comportamentos do campo elétrico vertical ( $E_z$ ) e da indução magnética horizontal ( $B_{\phi}$ ) gerados por descargas atmosféricas nuvem-solo na fase correspondente à descarga de retorno em relação a variações da velocidade de propagação da corrente ao longo do canal, da altura do ponto de cálculo dos campos em relação ao solo e da distância entre tal ponto e o local de incidência da descarga.

### II. METODOLOGIA DE CÁLCULO

#### A. Corrente na Base do Canal da Descarga

A corrente na base do canal da descarga, i(0,t), é representada através da soma de duas funções [5]:

$$i(0,t) = \frac{I_{01}}{\eta} \cdot \frac{(t/\tau_1)^n}{(t/\tau_1)^n + 1} \cdot e^{-t/\tau_2} + I_{02}(e^{-t/\tau_3} - e^{-t/\tau_4})$$
(1),

onde  $I_{01} = 9,9 \ kA$ ,  $\eta = 0,845$ ,  $\tau_1 = 0,072 \ \mu s$ ,  $\tau_2 = 5,0 \ \mu s$ ,  $I_{02} = 7,5 \ kA$ ,  $\tau_3 = 100 \ \mu s \ e \ \tau_4 = 6,0 \ \mu s$ . Na expressão acima,  $\tau_1$ e  $\tau_2$  correspondem, respectivamente, às constantes de tempo de frente e de decaimento da onda, enquanto que  $\eta$  é um fator de correção da amplitude da corrente. Na Figura 1 temos a forma de onda da corrente na base do canal e sua respectiva derivada em relação ao tempo. A corrente tem amplitude de 11 kA e derivada máxima de aproximadamente 105 kA/ $\mu$ s, valores considerados representativos de correntes subseqüentes típicas, conforme experimentos realizados com descargas provocadas por foguetes [6].

## B. Distribuição Espaço-Temporal da Corrente ao Longo do Canal da Descarga

Adotou-se, neste trabalho, o modelo da linha de transmissão (TL) [7] para determinação da distribuição espaço-temporal da corrente ao longo do canal. Neste modelo, o canal é considerado como uma linha de transmissão ideal, na qual a corrente e propaga com velocidade v sem sofrer atenuação ou distorção. Desse modo a corrente em um ponto do canal de altura z', em um instante t, pode ser determinada através da expressão:

$$i(z',t) = i(0,t-z'/v)$$
, para  $z' \le v.t$   
 $i(z',t) = 0$ , para  $z' > v.t$ 
(2)

Este trabalho recebeu o apoio do Programa Interunidades de Pós-Graduação em Energia (PIPGE/USP) e do CNPq – Conselho Nacional de Desenvolvimento Científico e Tecnológico.

F. Romero é mestrando em energia do PIPGE/USP e pesquisador do Grupo de Alta Tensão e Descargas Atmosféricas GATDA/USP (e-mail: fromero@iee.usp.br).

A. Piantini é coordenador do GATDA/USP e professor do Instituto de Eletrotécnica e Energia (IEE/USP), atuando no PIPGE/USP e na Escola Politécnica, PEA/EPUSP (e-mail: piantini@iee.usp.br).

A distribuição espaço-temporal da corrente é apresentada na Figura 2.



Fig. 1. Corrente na base do canal utilizada no cálculo dos campos. a) forma de onda; b) derivada da corrente.



Fig. 2. Forma de onda da corrente em três posições ao longo do canal (0 m, 2 km e 4 km) de acordo com o modelo TL [7], para  $v = 1.3 \times 10^8$  m/s.

#### C. Campo Elétrico Vertical e Indução Magnética

Para a determinação de  $E_z e B_{\phi}$ , o canal da descarga foi considerado perpendicular ao plano de terra, com comprimento total de 4 km e sem ramificações. A Figura 3 ilustra, em coordenadas cilíndricas, os parâmetros geométricos empregados para o cálculo dos campos, onde  $h_c(t)$  corresponde à posição real da frente de onda da corrente no instante  $t \in z' e$ 

a posição em que o observador, localizado no ponto P, "enxerga" a frente de onda em um determinado instante *t*.



Fig. 3. Parâmetros geométricos utilizados para cálculo dos campos admitindo o solo como um plano perfeitamente condutor (adaptada de [8]).

As expressões apresentadas em [9, 10] e utilizadas neste trabalho para os cálculos do componente vertical do campo elétrico,  $dE_z$  e da indução magnética  $dB_{\phi}$  para o caso de solo perfeitamente condutor são:

$$dE_{z}(r,\phi,h,t) = \frac{dz'}{4\pi\varepsilon_{0}} \left[ \frac{2.(h-z')^{2}-r^{2}}{R(z')^{5}} \cdot \int_{0}^{t} i(0,t-z'/v-R(z')/c)d\tau + \frac{2.(h-z')^{2}-r^{2}}{c\cdot R(z')^{4}} \cdot i(0,t-z'/v-R(z')/c) - \frac{r^{2}}{c^{2}\cdot R(z')^{3}} \cdot \frac{\partial i(0,t-z'/v-R(z')/c)}{\partial t} \right]$$
(3)  
$$B_{\phi}(r,\phi,h,t) = \frac{\mu_{0} \cdot dz'}{4\pi} \left\{ \frac{r}{R(z')^{3}} \cdot i(0,t-z'/v-R(z')/c) + \frac{r}{c\cdot R(z')^{2}} \cdot \frac{\partial i(0,t-z'/v-R(z')/c)}{\partial t} \right]$$

dl

(4),

onde  $dE_z$  e  $dB_{\phi}$  correspondem, respectivamente, ao campo elétrico vertical e indução magnética associados à corrente contida no elemento infinitesimal dz',  $\mu_0 e \varepsilon_0$  são, respectivamente, a permeabilidade e a permissividade do espaço-livre, c é a velocidade da luz e H é o comprimento total do canal. Na expressão (3) o primeiro termo é denominado campo eletrostático, predominante próximo da fonte, o termo intermediário é o campo de indução e o último, campo de radiação, que é predominante para pontos distantes da fonte. Na expressão (4) o primeiro e o segundo termos são denominados campos de indução e de radiação, respectivamente. Para o solo condutor perfeito, leva-se em conta a imagem do canal substituindo R(z') por R(-z')(distância entre o ponto de observação e a imagem do elemento infinitesimal dz', vide Figura 3 e z' por -z' nas equações (3) e (4). O campo total no ponto P é obtido considerando-se as contribuições da corrente i(z',t) presente em todos os elementos infinitesimais dz' ao longo do canal.

Inicialmente os campos  $E_z e B_{\phi}$  foram calculados para as mesmas condições consideradas em [5]. A Figura 4 apresenta os resultados obtidos para diferentes distâncias *r* entre o ponto P (ao nível do solo, h = 0 m) e o canal da descarga, sendo as ondas apresentadas sem considerar os tempos de atraso. Verifica-se uma boa concordância entre os resultados, confirmando a validade do procedimento adotado.



Fig. 4. Comparação entre os resultados obtidos neste trabalho (coluna da esquerda) e aqueles obtidos em [5] (coluna da direita) para o campo elétrico vertical  $E_z$  e para a indução magnética  $B_{\phi}$  ao nível do solo em diferentes distâncias r. Corrente da descarga indicada na Fig. 1, modelo TL, velocidade de propagação  $v = 1,3.10^8$  m/s. a)  $E_z$ , r = 50 m b)  $E_z$ , r = 5 km c)  $E_z$ , r = 100 km d)  $B_{\phi}$ , r = 50 m e)  $B_{\phi}$ , r = 100 km

#### III. CAMPO ELÉTRICO VERTICAL E INDUÇÃO MAGNÉTICA – SIMULAÇÕES E ANÁLISE

Neste item são analisados os comportamentos do campo elétrico vertical  $E_z$  e da indução magnética  $B_{\phi}$  em função de variações da distância entre o ponto de incidência da descarga e o ponto de cálculo dos campos, da velocidade de propagação da corrente ao longo do canal e da altura do ponto de cálculo dos campos em relação ao solo. A menos que indicado em contrário, nas simulações foram adotados os mesmos valores dos parâmetros citados anteriormente e indicados na Figura 4.

#### A. Distância do ponto de incidência da descarga (r)

Nota-se na Figura 4, que tanto a amplitude do campo elétrico vertical como a amplitude da indução magnética, diminuem à medida que o ponto de observação se afasta do canal da descarga. A partir de alguns quilômetros de distância da fonte os campos tendem a variar de forma inversamente proporcional com a distância, como se pode observar comparando-se as ondas do campo  $E_z$  relativas às distâncias de 5 km e de 100 km (Figs. 4b e 4c, respectivamente).

Nota-se também que as ondas tendem a se tornar mais íngremes (menores tempos de frente) para pontos mais afastados do canal. No caso do campo elétrico, tal comportamento se deve ao fato de que, para pontos próximos à fonte (r = 50 m, Fig. 4a), o componente predominante do campo elétrico é o eletrostático, que varia com a integral da corrente, enquanto que para pontos mais afastados (r = 100 km, Fig. 4c) a maior influência é exercida pelo campo de radiação, que é função da derivada da corrente.

Com relação à indução magnética, para pontos próximos à fonte o campo de indução associado às correntes nos elementos do canal mais próximos do ponto de observação é o mais importante, de modo que a forma de onda de  $B_{\phi}$  é similar à da corrente na base do canal. Para pontos afastados da fonte o campo de radiação é predominante, assim como no caso do campo elétrico. Nessa situação os campos  $E_z$  e  $B_{\phi}$  apresentam essencialmente a mesma forma de onda, sendo válida a seguinte relação entre os módulos das suas amplitudes:  $|E_z| = c \cdot |B_{\phi}|$ .

#### B. Velocidade de propagação da corrente (v)

Para avaliação da influência da velocidade de propagação da corrente, os campos  $E_z e B_{\phi}$  foram calculados às distâncias de 50 m, 5 km e 100 km do canal, considerando-se três diferentes valores de *v*: 10 %, 30 % e 60 % da velocidade da luz no vácuo. As Figuras 5 e 6 apresentam, respectivamente, os resultados referentes a  $E_z e B_{\phi}$ .

Com relação ao campo elétrico vertical, a velocidade de propagação da corrente tem efeito significativo tanto em pontos próximos como afastados da fonte. No caso de pontos próximos à fonte (r = 50 m, Fig. 5a), onde predomina o campo eletrostático, um aumento da velocidade implica em uma redução da amplitude e do tempo de frente de  $E_z$ . Para o caso de grandes distâncias (r = 100 km, Fig. 5c), em função da predominância do campo aumenta com o aumento da

velocidade v. As formas de onda são, no entanto, bastante semelhantes. Em pontos intermediários, contudo, a influência da velocidade é significativa tanto na amplitude como na forma de onda de  $E_z$ . Na situação considerada na Fig. 5b (r = 5 km) observa-se que, para o caso de  $v = 0,1 \cdot c$ , o campo apresenta uma rampa lenta após o pico inicial, com duração superior a 100 µs. Essa é uma das características observadas de  $E_z$  quando de medições em pontos situados a até alguns quilômetros do canal [11, 12]. Entretanto, para velocidades mais elevadas tal característica não é reproduzida quando da representação da descarga de retorno através do modelo TL.



Fig. 5. Campo elétrico vertical ao nível do solo (h = 0 m) em função da velocidade de propagação v. a) r = 50 m b) r = 5 km c) r = 100 km.



Fig. 6. Indução magnética ao nível do solo (h = 0 m) em função da velocidade de propagação v. a) r = 50 m b) r = 5 km c) r = 100 km

Nota-se na Figura 6 que, ao contrário de  $E_z$ , a amplitude da indução magnética tende a ser mais elevada à medida que aumenta a velocidade de propagação da corrente ao longo do canal, independentemente da posição do ponto de observação em relação à fonte. Nota-se que, para as situações consideradas, a influência da velocidade é pequena no caso de pontos muito próximos à fonte, tanto em termos de amplitude como de forma de onda, como indicado na Figura 6a. Para distâncias intermediárias, a amplitude e o tempo de decaimento da onda variam bastante em função de *v*. Para grandes distâncias as formas de onda de  $B_{\phi}$  são muito semelhantes, embora seja grande a dependência de suas amplitudes em relação à velocidade *v*.

#### C. Altura do ponto de observação (h)

A influência da altura do ponto de observação no campo  $E_z$  é pequena, particularmente nos casos em que essa altura é muito inferior ao comprimento do canal. Essa influência tende a diminuir à medida que aumenta a distância entre o ponto de observação e o local de incidência da descarga. Já no caso da indução magnética  $B_{\phi}$  a influência da altura é ainda menor. A título de ilustração as Figuras 7 e 8 apresentam, respectivamente, os campos  $E_z$  e  $B_{\phi}$  calculados às alturas de 0 m e 20 m para diferentes distâncias em relação ao canal. Nota-se que no caso de  $B_{\phi}$  as diferenças entre as ondas são praticamente imperceptíveis mesmo para pontos próximos ao canal da descarga.



Fig. 7. Campo elétrico vertical em função da altura do ponto P considerado ( $v = 1.3 \times 10^8$  m/s). a) r = 50 m b) r = 5 km c) r = 100 km



(b)

Fig. 8. Indução magnética em função da altura do ponto P considerado ( $v = 1.3 \times 10^8$  m/s). a) r = 50 m b) r = 5 km.

#### IV. CONCLUSÕES

Neste trabalho foram apresentadas algumas características do campo elétrico vertical e da indução magnética horizontal gerados por descargas atmosféricas. A terra foi representada como um plano perfeitamente condutor, aproximação esta que pode ser considerada razoável para o cálculo de  $E_z e B_{\phi}$  no caso de solos com baixa resistividade ou quando a distância entre o local de incidência da descarga e o ponto de observação é de no máximo alguns poucos quilômetros.

As simulações mostraram que a velocidade de propagação da corrente ao longo do canal da descarga tem efeito significativo tanto em  $E_z$  como em  $B_{\phi}$ , embora sejam diferentes os comportamentos dos campos em relação à variação desse parâmetro.

A distância entre o ponto de incidência da descarga e o ponto de observação também tem grande influência nos campos, sobretudo em suas amplitudes. A partir de alguns quilômetros de distância da fonte os campos tendem a variar de forma inversamente proporcional com a distância, apresentando nessa situação basicamente a mesma forma de onda, sendo a relação entre os módulos das suas amplitudes igual à velocidade da luz no vácuo, i. e.,  $|E_z| / |B_{\phi}| = c$ .

A variação dos campos em função da altura do ponto de observação é pequena, sendo em geral desprezível para os casos em que esta altura é muito inferior ao comprimento do canal, em especial para pontos situados a distâncias superiores a 50 m do local de incidência da descarga.

#### V. REFERÊNCIAS

- A. Piantini, J. M. Janiszewski, "Avaliação do número de interrupções em linhas de média tensão devido a descargas atmosféricas indiretas", In: XVIII Seminário Nacional de Produção e Transmissão de Energia Elétrica (XVIII SNPTEE), Curitiba, Out. 2005.
- [2] A. Piantini, A. Silva Neto, "Tensões Induzidas em Linhas de Baixa Tensão por Descargas Atmosféricas", In: IEEE/PES Transmission & Distribution Conference and Exposition: Latin America. São Paulo, Nov. 2004.
- [3] S. Lundquist, "Fires caused by lightning and electric wires", Proceedings of the 21<sup>st</sup> Int. Conf. on Lightning Protection, pp. 475-478, Berlin, 1992.
- [4] C. A. F. Sartori, "Aspectos de compatibilidade eletromagnética em estruturas atingidas por descargas atmosféricas," Tese de Doutorado, Depto. de Energia e Automação Elétricas, Escola Politécnica, Universidade de São Paulo, São Paulo, 1999.
- [5] C. A. Nucci, M. A. Uman, G. Diendorfer, F. Rachidi, M. Ianoz, C. Mazzetti, "Lightning return stroke current models with specified channel-base current: a review and comparison," *J. of Geophys. Res.*, vol. 95, no. D12, pp. 20.395-20.408, Nov. 1990.
- [6] C. Leteinturier, C. Weidman, J. Hamelin, "Current and electric field derivatives in triggered lightning return strokes", J. Geophys. Res., 95, pp. 811-828, 1990.
- [7] M. A. Uman, D. K. McLain, E. P. Krider, "The electromagnetic radiation from a finite antenna", J. Geophys. Res., vol. 74, no. 28, pp. 6899-6910, 1969.
- [8] T. X. Song, C. Wang, "Two numerical methods for calculating electromagnetic fields radiated from nature lightning", *J.of Electromag. Waves and Appl.*, vol. 19, no. 4, pp. 513-528, 2005.
- [9] M. J. Master, M. A. Uman, "Transient electric and magnetic fields associated with establishing a finite electrostatic dipole", *Am. Journal of Physics*, vol. 51, no. 2, pp. 118-126, Feb. 1983.
- [10] M. Rubinstein, M. A. Uman, "Transient electric and magnetic fields associated with establishing a finite electrostatic dipole, revisited", *IEEE Trans. on Electromagnetic Compatibility*, vol. 33, no. 4, pp. 312-320, Nov. 1991.
- [11] V. A. Rakov, M. A. Uman, "Review and evaluation of lightning return stroke models including some aspects of their application", *IEEE Trans.* on *Electromagnetic Compatibility*, vol. 40, no. 4, pp. 403-426, Nov. 1998.
- [12] C. A. Nucci, "Lightning-induced voltages on overhead power lines Part 1: return stroke current models with specified channel-base current for the evaluation of the return-stroke electromagnetic fields", *Electra*, no. 1, pp. 75-102, Aug. 1995.

#### VI. BIOGRAFIAS



Fabio Romero nasceu em Uberlândia – MG, em 11 de abril de 1980. Graduou-se em Engenharia Elétrica – modalidade Eletrotécnica - pela Escola de Engenharia de Lins em 2004. Atualmente é pesquisador do Grupo de Alta Tensão e Descargas Atmosféricas (GATDA/USP) e está em fase de conclusão para obtenção do título de Mestre em Energia no Programa Interunidades de Pós-Graduação em Energia da Universidade de São Paulo

(PIPGE/USP). Suas principais áreas de interesse estão relacionadas a descargas atmosféricas e transitórios eletromagnéticos em sistemas elétricos.



Alexandre Piantini nasceu em Londrina - PR, em 10 de agosto de 1963. Graduou-se em Engenharia Elétrica pela Universidade Federal do Paraná em 1985 e obteve os títulos de Mestre e Doutor em Engenharia pela Escola Politécnica da Universidade de São Paulo em 1991 e em 1997, respectivamente.

Ingressou na Universidade de São Paulo (USP) em 1986, como pesquisador do Instituto de Eletrotécnica e Energia. Atualmente é professor do

Programa de Pós-Graduação em Energia da USP (PIPGE/USP) e do Programa de Pós-Graduação da Escola Politécnica da USP (PEA/EPUSP) e coordenador do Grupo de Alta Tensão e Descargas Atmosféricas (GATDA/USP). Suas principais áreas de interesse estão relacionadas a descargas atmosféricas e a transitórios eletromagnéticos em sistemas elétricos. É autor ou co-autor de mais de 90 trabalhos científicos apresentados em congressos nacionais e internacionais ou publicados em revistas indexadas.